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A B S T R A C T

The prediction of the structural behavior under the progressive collapse scenario has received growing attentions
in recent years. The failure of the bolted shear tab connection is usually dominated by the shear fracture.
However, few researchers have considered the effect of the shear fracture in the progressive collapse simulation.
This research develops a practical modeling routine to upscale the material shear fracture model in the collapse
simulation of a large-scale floor system. The calibration and validation of the material shear fracture model
employ five types of plate coupon specimens with significantly different stress triaxiality and Lode angle
parameters. Via optimizing the coupon test data, this study determines the 3-D fracture locus of three fracture
models, which are subsequently used to predict the fracture of a coupon specimen in the tension and shear
conditions. Among the three fracture models, the Bai model has demonstrated good accuracy for a wide range of
stress triaxiality and Lode angle parameters, while the applicability of the other two fracture models are confined
to the stress triaxiality and Lode angle parameters, from which they are calibrated. These fracture models are
also used to simulate the fracture of a girder-to-column connection under a center column removal scenario,
which indicates the fracture in both the girder flange and girder web depends highly on the Lode angle. Prior to
analyzing the full-scale composite floor system, the numerical study calibrates the fracture strain in the macro
shell elements used to build the girder-to-column connection model, based on the fracture locus determined from
the coupon tests. The fracture strain based shell element model is then used in the steel-concrete composite floor
simulation, and demonstrates a good prediction of the structural resistance curve and the failure mode compared
to the experimental results.

1. Introduction

Progressive collapse of structures often originates from local fail-
ures, which are often triggered by natural or artificial disasters, and
propagate to the critical components, and subsequently to the entire
structure [1]. The ductile fracture represents a primary failure me-
chanism in well-designed and constructed steel structures during the
progressive collapse [2], especially in the beam-to-column connections.
Furthermore, the failure of the bolted connection is likely to be domi-
nated by the shear fracture [3], which depends on the Lode angle.

In recent decades, the shear fracture governed by the Lode angle
were comprehensively investigated by several reseachers. Through
fracture test of metallic materials over a wide range of stress triaxial-
ities, Bao and Wierzbicki [4,5] found that the fracture locus does not
necessarily follow a smooth, monotonic curve in the entire range of

stress triaxiality caused by the correspondingly different fracture me-
chanisms. In the range of high stress triaxialities, the steel fracture
mechanism follows the void growth model, while at low stress triaxi-
alities, fracture may develop as a combination of shear and void growth
modes. Wilkins [6] was the first to introduce the effect of Lode angle θ,
which is related to the third deviatoric stress invariant and is often
neglected in the ductile fracture models. In Wilkins′ model, the stress
triaxiality and Lode angle are separable. Besides, the fracture locus is
symmetric with respect to the Lode angle. Xue [7] extended Wilkins′
model into a non-separable but symmetric 3D fracture locus in the
space of stress triaxiality and the normalized third stress invariant.
Recently, Bai [8] has proposed a general asymmetric fracture locus in
the 3D space of equivalent plastic fracture strain εf, stress triaxiality η,
and the Lode angle parameter. The asymmetric fracture locus consists
of six parameters, but reduces to four parameters if the fracture locus
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Nomenclature

D1, D2, D3, D4, D5, D6, D0 fracture parameters for fracture models
ft maximum tensile strength of concrete
Gf fracture energy of concrete
lc element size
T temperature
Δu crack opening displacement of concrete
ε true strain
εf plastic fracture strain
εnom nominal strain
εf

+ bounding curve corresponding to the axisymmetric ten-
sion

εf
0 bounding curve corresponding to the plane strain

εf
- bounding curve corresponding to the axisymmetric

compression
η stress triaxiality
ηavg average value of the stress triaxiality
θ Lode angle
θ̄ Lode angle parameter
θ̄avg average value of the Lode angle parameter
ξ Lode angle parameter
σ true stress
σc negative part of the effective stress tensor
σeq effective stress
σm mean stress
σnom nominal stress
σt positive part of the effective stress tensor
ωc compressive damage variable
ωt tensile damage variable

(a) Plan view 

(b) Elevation view 

(c) Test setup 
Fig. 1. Specimen dimensions and test setup for the composite floor system.
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assumes a symmetric shape with respect to the Lode angle. Bai [9] has
demonstrated the accuracy of the four-parameter symmetric model for
the steel fracture. Therefore, this study adopts the four-parameter Bai
model with symmetric assumptions for the progressive collapse simu-
lation.

Up to now, many researchers have reported nonlinear finite-element
analyses of the progressive collapse behaviors of composite floor sys-
tems. These include work performed by Sadek [10], Alashker [11–13],
Li [14], Main and Liu [15], Fu [16,17], Kwasniewski [18]. In these
finite-element analyses, comprehensive parametric investigations on
the failure modes had been conducted by altering structural config-
urations, material properties, loading schemes, etc. However, few of
them have considered the Lode angle in the progressive collapse si-
mulation.

The present paper develops a convenient calibration procedure of
Bai model [9] for steel materials subjected to monotonic steel shear
fracture, and proposes a simple method to incorporate this shear frac-
ture effect in the structural level simulation. In addition to Bai model,
this study also compares the fracture locus calibrated from the Rice-
Tracey (RT) model and the Constant Fracture Strain (CFS) model.
Among the three models, Bai′s model has demonstrated enhanced ac-
curacy when compared against the material coupon specimens sub-
jected to shear and tension loads. Beyond the material level compar-
ison, the numerical analysis of a rigid girder-to-column connection
under tension and bending reveals clear dependence of the fracture
failure on the Lode angle. To facilitate the engineering assessment of
shear fracture in large scale structures, this study proposes an empirical
conversion to consider the shear fracture effect in the girder-to-column

connection using shell elements. Subsequently, the numerical in-
vestigation demonstrates the feasibility of using this modified shell
element modeling method in simulating the progressive collapse of a
composite floor system.

2. Composite floor system test

The experimental program in this study examines a 2×1 bay full-
scale steel-concrete composite floor system under monotonically in-
creasing quasi-static loading with a middle edge column removed to
simulate the progressive collapse scenario. Fig. 1 shows the specimen
details, where the symbols “C,” “G,” “B” and “P” represent columns,
girders, beams, and peripheral beams, respectively. The span length of
girders and beams are 4.2 m and 3.6m, respectively. The column height
is 1.8m, which equals half of the storey height. The girder, beam, and
column adopt standard sections [19] of H200×100×5.5×8,
H150×75×7×10, and H200×200×8×12, respectively.
“H200×100×5.5× 8” represents an H-section beam, for which the
beam height, flange width, flange thickness and web thickness are
200mm, 100mm, 8mm, 5.5mm, respectively. The connection between
the steel beams and composite slab utilizes the 16mm-diameter 80mm-
height shear studs with spacings of 300mm along the girder axis and
305mm along the beam axis. As shown in Fig. 1(c), the point load from
the actuator was equally distributed to 24 loading points on the slab by
a load-distribution system. The lateral movements of the extended
girders, i.e., G5, G6, G7, G8, and the extended beams, i.e., B6, B7, B8,
were constrained by the horizontal supports to simulate the boundary
condition provided by neighboring structural members.

(a) Girder-to-column connection (b) Beam-to-column connection

(c) Beam-to-girder connection 

(d) Dimensions of the composite slab

Fig. 2. Connection details of the prototype structure.

J. Wang, et al. Engineering Structures 200 (2019) 109701

3



As illustrated in Fig. 2, the girder-to-column connection employs the
welded flange-bolted web moment resisting connection, while the
beam-to-column and beam-to-girder connections are simple shear tab
connections. The M16 (16mm in nominal diameter) Grade 10.9 fric-
tional high-strength bolts are employed to connect the girder/beam
web with the extended shear tab. The shear tab is fabricated by the
girder web. All high-strength bolts are applied with a pre-tension force
of 100 kN. The thickness of the composite slab is 100mm, and the
thickness of the trapezoidal steel deck is 1.2mm. The concrete slab
contains a 200× 200mm CRB550 welded steel fabric with a clear
cover of 15mm. The diameter of the steel fabric is 8mm.

Table 1 lists the mechanical properties of the structural steels, re-
bars, steel decks and the shear studs, all measured from coupon speci-
mens, except for the shear studs and high-strength bolts, which adopt
the nominal material properties provided by the manufacturers. The 28-
day compressive strength of the concrete equals 33MPa, measured
from the 150mm×150mm×150mm cubes on the same day as the
floor test.

Fig. 3(a) presents the applied vertical load versus the vertical dis-
placement measured below the slab at the position corresponding to the
removed column (C0) for the tested specimen. Two important failure
events occurred at the two distinctive peaks in the load-deformation
curve: the fracture failure of the top flange of the G1-C1 connection [see
Fig. 1(a) and 1(b)] followed by the failure of the residual section of the
G1-C1 connection, as illustrated in Fig. 3(b), which shows the failure
after the test. Cracking in the top flange of the G1-C1 connection trig-
gers additional vertical displacement and initiates the transition from
the flexural mode to the catenary-membrane mode, while the complete
separation of the G1-C1 connection breaks the load path in the catenary
action, leading to the peak resistance and a rapid deterioration in the
post-peak resistance. Therefore, the crack extension in the girder-to-
column connection determines directly the response of this composite
floor in the progressive collapse test. The following section aims to

integrate the material fracture response in simulating the fracture
failure in the structural component as well as the global structure.

3. Fracture parameter calibration

The calibration of the fracture locus under high stress triaxiality
often utilizes the round bar and notched round bars under uniaxial
tension. Due to the limited thickness of the steel section in the floor test,
fabrication of the notched round bars becomes practically challenging.
This study, therefore, makes use of the plate specimens and holed plate
specimens to replace the round bar and notched round bar specimens.
This section presents the calibration procedure for the fracture locus
using the thin plate specimens based on the simplified symmetrical Bai
model.

3.1. Fracture model

In the six-parameter asymmetric model proposed by Bai [9] in
Fig. 4(a), the fracture locus has three bounding curves, ε = eDf

+ - η
1

D2

(corresponding to the axisymmetric tension, θ̄ =1), ε = eDf
0 - η

3
D4 (cor-

responding to the plane strain or generalized shear loading condition,
θ̄ =0), and ε = eDf

- - η
5

D6 (corresponding to the axisymmetric compres-
sion, θ̄ =−1). Eq. (1) defines this asymmetric model, which has six
parameters, D1, D2, D3, D4, D5, and D6 to be calibrated.
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where η denotes the stress triaxiality and θ̄ refers to the Lode angle
parameter. The range of θ̄ is [−1,1].
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= −θ
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ξ¯ 1 2 arccos (5)

= =ξ s s s
σ

θ27
2

cos(3 )
eq

1 3 3
3

(6)

where (σ1, σ2, σ3) are the three principal stresses, while (s1, s2, s3) re-
present the three principal deviatoric stresses. σeq corresponds to the

Table 1
Mechanical properties of steel materials for different elements in various
structural members.

Steel
member

Location Yield stress
(MPa)

Ultimate stress
(MPa)

Elongation (mm/
mm)

Girder Flange 390 536 0.31
Web 419 557 0.31

Beam Flange 365 517 0.31
Web 400 535 0.32

Column Flange 373 531 0.32
Web 395 546 0.31

Rebar Slab 596 672 0.07
Steel deck Slab 320 380 0.38
Shear stud Slab 320 400 0.14
Bolt Connection 940 1040 0.10

(a) Load-displacement curve (b) Failure of the G1-C1 connection

Fig. 3. Failure modes of the experimental test.
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mises effective stress, and σm is the mean stress. θ stands for the Lode
angle, which ranges over 0≤ θ≤ π/3. ξ is another Lode angle para-
meter.

If the symmetric fracture locus is assumed, as proposed by a number
of researchers [7,20,21], the bounding curves εf

+ becomes identical to
εf

- , as demonstrated in Fig. 4(b). The middle term in Eq. (1) thus van-
ishes, which implies that the damage evolution depends only on the
absolute magnitude of the Lode angle parameter θ̄. Assuming
ε = ε = εf

+
f
-

f
ax , Fig. 4(b) illustrates the four-parameter symmetric Bai

model. Eq. (7) defines this symmetric Bai model, which has four
parameters, D1, D2, D3, D4, to be determined,

= − + = − +− − −ε η θ ε ε θ ε e e θ e( , ¯) [ ] ¯ [D D ] ¯ Df f
ax

f f
η η η0 2 0

1
D

3
D 2

3
D2 4 4 (7)

At least four distinct sets of (εf, η, θ̄) measured from the steel coupon
test are necessary to calibrate the symmetric Bai model.

In addition to the Bai model, the following section also calibrates
the Rice-Tracey model [22], namely the RT model. As shown in Eq. (8),
the Bai model reduces to the RT model when the Lode angle parameter
θ̄ is zero,

(a) asymmetric (b) symmetric

Fig. 4. 3D fracture locus.

Table 2
Summary of the coupon test specimen.

Type of Specimens Specimen Name η θ̄

No. 1 Plate specimen ≈0.33 ≈1
No. 2 Hole Plate specimen >0.33 ≈1
No. 3 Notched Plate Specimen >1/√3 ≈0
No. 4 90° Shear Plate Specimen ≈0 ≈0
No. 5 45° Shear Plate Specimen >0 0 < θ̄ < 1

(c) Notched plate specimen   (d) Shear plate specimen 

(a) Plate specimen (b) Hole plate specimen

Fig. 5. Coupon test specimen details.

Fig. 6. The true stress-strain relationship.
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= = −ε η ε e( ) Df f
η0

3
D4 (8)

The bounding curves εf
ax and εf

0 in Fig. 4(b), denoted as RT1 and
RT0, represent the RT models at θ̄ =1 and θ̄ =0, respectively. By

further setting the stress triaxiality to zero, Eq. (8) becomes a simple
“Constant Fracture Strain (CFS) model”.

=ε D (constant)f 0 (9)

(a) Plate specimen (No.1) (b) Hole plate specimen (No.2)

(c) Notched plate specimen (No.3) (d) 90° Shear plate specimen (No.4)

Fig. 7. Elements (shown in red) analyzed for triaxiality and Lode angle parameter for each specimen. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

(a) Plate specimen (b) Hole plate specimen

(c) Notched plate specimen (d) 90° Shear plate specimen 

Fig. 8. Force-displacement curve of each specimen.
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The forthcoming section also includes this model [Eq. (9)] for
comparison purposes.

3.2. Design of the coupon test

The coupon specimens are extracted from the girder web (GW) and
girder flange (GF) made from the hot-rolled Q345 H-section beam. The
thicknesses of the coupon specimens from these two elements are
5.3 mm (girder web) and 5.8 mm (girder flange), respectively. Table 2

lists a total of five types of coupon specimens, including the plate
specimen (No. 1), hole plate specimen (No. 2), notched plate specimen
(No. 3), 90° shear plate specimen (No. 4) and 45° shear plate specimen
(No. 5). Table 2 also indicates the approximate stress triaxiality and
Lode angle parameter for each type of specimens. Fig. 5 shows the
geometric configurations and dimensions of the coupon specimens. The
calibration of Bai model utilizes four types of specimens (Nos. 1–4
specimens), with different stress triaxiality and Lode angle parameters,
to uniquely determine the four parameters in Eq. (7). The calibration of
the RT1 and RT0 models makes use of two types of specimens (the Nos.
1 and 2 for RT1 and Nos. 3 and 4 for RT0 model) to estimate the two
parameters D3 and D4 in Eq. (8). The calibration of the CFS model, on
the other hand, uses the No. 1 specimen. The remaining No. 5 specimen
is reserved as an independent set to verify the accuracy of the calibrated
fracture models.

The loading rate of strain for all tests remains fixed at 0.002/s. The
longitudinal deformation of the specimens is measured by an ex-
tensometer with a 50mm gauge length.

3.3. True stress-strain curve

The nominal strain εnom equals the deformation measured by the
extensometer (ΔL) divided by the gauge length of the extensometer
(L0), as indicated in Eq. (10). The nominal stress σnom, as shown in Eq.
(11), is equal to the applied force (F) divided by the initial cross-section
area of the specimen (A0).

=ε L
L
Δ

nom
0 (10)

=σ F
Anom

0 (11)

Prior to the specimen necking, the true stress σ and true strain ε
derive from the nominal stress σnom and the nominal strain εnom by Eqs.
(12) and (13),

= +σ σ ε(1 )nom nom (12)

= +ε εln(1 )nom (13)

However, beyond the ultimate stress when necking initiate, plastic
deformation localizes in the necking region. Eqs. (12) and (13) become
invalid. Instead, the true strain and true stress beyond necking follow
the relationship in Eqs. (14) and (15), in which, the applied force F and
the cross-sectional area of the necking zone, A, are measured simulta-
neously,

=σ F
A (14)

=ε ln( A
A

)0
(15)

(a) Stress triaxiality (b) Lode angle parameter 
_

Fig. 9. Evolution of stress triaxiality and Lode angle parameter in girder flange specimen.

Table 3
Results of coupon tests.

Specimen Girder flange Girder web

εf ηavg θ̄avg εf ηavg θ̄avg

Plate 1.1764 0.4567 0.6834 1.1064 0.4329 0.7262
Hole plate 0.7837 0.7229 0.8754 0.6373 0.6773 0.7766
Notched Plate 0.1793 0.8295 0.0162 0.2488 0.8517 0.0145
90° shear Plate 0.9267 0.1228 0.1509 0.6943 0.0853 0.1546

Fig. 10. ηavg and θ̄avg at fracture for different specimens.

Table 4
Calibrated fracture models.

Fracture model Steel D1 D2 D3 D4

Bai model GF 7.7400 2.8960 1.0710 2.1560
GW 6.0890 2.8950 0.6550 1.1380

RT1 model GF – – 2.362 1.526
GW – – 2.939 2.257

RT0 model GF – – 1.233 2.324
GW – – 0.778 1.339

CFS model GF D0= 1.176
GW D0=1.106

J. Wang, et al. Engineering Structures 200 (2019) 109701
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As recommended by Jia [23] and Yan [24], the post-necking true
stress-strain curve could be assumed as a straight line. This implies that
the post necking true stress-true strain relationship requires only a
single measurement of A at a discrete post-necking deformation level.
Fig. 6 shows the true stress-true strain measured for the girder flange
and the girder web. Each of the three elements includes three dupli-
cated flat coupons, which experience the uni-axial tension until fracture
occurs. The three duplicated specimens provide an average elongation
for each element. The experimental program includes a separate plate

(a) Plate specimen (No.1) (b) Hole plate specimen (No.2)

(c) Notched plate specimen (No.3) (d) 90° Shear plate specimen (No.4)

(e) 45° Shear plate specimen (No.5)    (f) Comparison of different fracture models 

Fig. 11. Comparison of FEM simulation and Test results of the girder flange specimen.

Table 5
Scaling factors by mesh size for Bai model.

Element size (mm) Scaling factor i(lc)

GF GW

0.5 1 1
1.0 0.775 0.8
1.5 0.625 0.7
2.0 0.505 0.55
3.0 0.33 0.33

Fig. 12. Comparison force-displacement plots for mesh sizes 0.5 mm, 1.0 mm,
1.5 mm and 3.0mm.
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specimen for each element to measure the cross-sectional area beyond
necking when the specimen reaches 90% of the average elongation.

3.4. Calibration

The calibration procedure employs the finite element package LS-
DYNA R9.1 [25]. The FE model consists of 8-node solid elements with
reduced integration, which has one integration point in each solid
element. As shown in Fig. 7, the presence of planes of symmetry in the
coupon specimens leads to 1/8 models for the Nos. 1–3 specimens, and
a 1/2 model for the No. 4 specimen. The element size in the critical
region, which anticipates high stresses, equals 0.5 mm, a reliable size
recommended by Yan [24]. Fig. 8 shows the comparison of the force-
displacement curves between the test and the simulation without
fracture modeling. The numerical force-displacement responses agree
closely with those measured from the test prior to the fracture failure.
The test force-displacement curves represent the average curves among
the duplicated specimens for each type of specimen. The relationship

between the specimen displacement and the equivalent strain at the
critical location (the red element in Fig. 7) derives from the numerical
analysis for each case. The center critical elements shown in Fig. 7
corresponds to the mid-thickness position at the center of each spe-
cimen. The equivalent plastic strain at fracture εf for the center element
(shown in Fig. 7) thus equals the equivalent plastic strain corresponding
to the displacement at fracture (marked by red circles in Fig. 8).

Fig. 9 illustrates the evolution of the stress triaxiality and Lode angle
parameter in the critical element (red element in Fig. 7) up to fracture
for the girder flange specimen. The stress triaxiality and Lode angle
parameter do not remain constant during the loading procedure. In
order to reflect the effect of the loading history, this study calculates the
average values of the stress triaxiality and Lode angle parameter, i.e.,
ηavg and θ̄avg, as follows,

∫
=η

ηdε
εavg

ε

f

0
f

(16)

Fig. 13. Comparison force-displacement plots for mesh sizes 0.5 mm, 1.0 mm,
and 2.0 mm.

Fig. 14. Triaxiality and Lode angle parameter of the single bolt connection
simulation.

Fig. 15. Girder-to-column connection models.

Fig. 16. Load-displacement curves of girder-to-column connection with dif-
ferent fracture locus.
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∫
=θ

θ ε
ε

¯
¯d

avg

ε

f

0
f

(17)

Table 3 lists a total of four groups of (εf, ηavg, θ̄avg) values for dif-
ferent types of specimens (Nos. 1–4 specimens). Fig. 10 illustrates the
corresponding (ηavg, θ̄avg) pairs in η-θ̄ plane. These four types of speci-
mens are located fairly dispersed in the η-θ̄ plane, which facilitates the
calibration of the unique fracture locus values. Using the Optimization
Toolbox in Matlab, the values of D1, D2, D3, and D4 can be optimized
based on the test data points by Eq. (18), which is chosen to minimize
the average error. In Eq. (18), N represents the number of data points
used in the fracture locus calibration. Table 4 lists the fracture para-
meters of the different fracture models.

(a) Crack patterns at 200mm 

(b) Crack patterns at 400mm 

(c) Lode angle parameter distributions in the W(Bai)_F(Bai) case 
Fig. 17. Comparison of the failure mechanisms.

Fig. 18. Bolted shear tab connection models.
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∑= ⎡
⎣

− ⎤
⎦=N

ε η θ εMin (Error) Min 1 | ( , ) |
i

N
f i i f iD ,D ,D ,D 1 ,1 2 3 4 (18)

Using the fracture locus calibrated above, the finite element simu-
lations reanalyze the coupon specimens by implementing the different
fracture models in LS-DYNA, through the No. 224 material in LS-DYNA
(Tabulated Johnson-Cook material), which defines the fracture locus by
a table of fracture strains corresponding to different stress triaxiality
and Lode angle parameter. Fig. 11 compares the force-displacement
curves between the coupon test results of the girder flange specimen
and the FEM simulations using different fracture models. Fig. 11 also
compares the prediction using different fracture models on the 45°

shear plate specimen (No. 5). The Bai model predicts closely the in-
itiation of the fracture for all the specimens as reflected in Fig. 11, while
the RT1, RT0 and CFS models are only suitable for the specimens used
to calibrate them. The fracture strains predicted by these models are
illustrated in Fig. 11(f), which is used to explain the deviations of RT1,
RT0 and CFS models. The RT0 model is calibrated by Nos. 3 and 4
specimens, for which θ̄ values are close to 0, but the θ̄ values of No. 1,
No. 2, and No. 5 specimens are close to 1. Besides, as shown in
Fig. 11(f), for the same η, the fracture strain at θ̄ =1 is much higher
than that at θ̄ =0. Therefore, for No. 1, No. 2 and No. 5 specimens, the
fracture strains predicted by RT0 model are much lower than that
predicted by Bai model. Conversely, the RT1 and CFS models, which are
calibrated by No. 1 and No. 2 specimens, are more likely to over-
estimate the fracture strains for No. 3 and No. 4 specimens.

3.5. Mesh-size regularization

The plastic fracture strain in the LS-DYNA’s No. 224 material is
defined as the product of the functions in Eq. (19).

=ε f η θ g ε h T i l( , ¯) ( ̇ ) ( ) ( )f p c (19)

where f(η, θ̄) is a function of the stress triaxiality η and Lode angle
parameter θ̄. In this study, this function follows the fracture models
defined in Table 4. g ε( ̇ )p , h T( ) and i l( )c are functions of the plastic
strain rate εṗ , the temperature T and the initial element size lc, re-
spectively. Even though the progressive collapse of building structures
is a dynamic process, the strain rate effect does not affect the structural
responses under the specified column removal scenario as noted by Su
et al. [26]. Besides, the test is conducted at the room temperature.
Therefore, the effect of strain rate and temperature are excluded in this
study.

Hence, the final step for the fracture model calibration is to develop
the mesh-size scaling function i l( )c for the element erosion. The mesh-
size regularization scaling function i l( )c defines the plastic failure strain
as a function of the element size. The mesh size used in the regular-
ization equals the ratio of the element volume over the area of the
largest face of the element. For a perfectly cubical element, the mesh
size equals exactly the element side length. The scaling factor derives
from numerical simulations of the plate specimen (No. 1) using dif-
ferent mesh sizes, 0.5 mm, 1.0mm, 1.5mm and 3.0 mm. Iterative nu-
merical analyses determine the value of the scaling factor by matching
the failure displacement in each mesh size with the test measurement.
Table 5 lists the scaling factors for the mesh sizes ranging from 0.5 mm
to 3mm. Fig. 12 shows the force-displacement curves for the plate
specimens. With the scaling factors, all four simulations with different
mesh sizes fail at virtually the same displacement.

Furthermore, a single bolt connection is also simulated with dif-
ferent mesh sizes. The mesh size 0.5 mm is the benchmark case, while
the effect of the mesh-size regularization is depicted by comparing the
results with or without the mesh-size scaling factor. As shown in
Fig. 13, without the scaling factor, the results from the 1.0mm mesh
and 2.0mm mesh (“1.0 mm constant” and “2.0mm constant”) are not
converging. However, the results from the “1.0 mm” and “2.0 mm”
mesh size considering the mesh scaling factor predict the fracture
evolution successfully. Fig. 14 illustrates the triaxiality η and Lode angle
parameter θ̄ distributions in the single bolt connection simulation, and
the η and θ̄ at the crack initiation point are approximately equal to 0.1
and 0.2, respectively. The η and θ̄ in this simulation are significantly
different from those in the plate specimen as listed in Table 3, which
demonstrates that the mesh-size scaling factor remains independent of
the triaxiality and Lode angle.

4. Component simulation

This section integrates the material fracture model calibrated in
Section 3 in simulating the response of girder-to-column connection,

Fig. 19. True stress-strain curves of the shell element.

Fig. 20. Comparison of FEM simulation and test result of the steel deck spe-
cimen.

Fig. 21. True stress-strain curve of the shear tab shell element.
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with the objective to quantify the fracture evolution on the load-de-
formation responses of the structural components.

4.1. Girder-to-column connection

As shown in Fig. 15, if the composite slab is neglected, the vertical
load after the C0 column loss would be only supported by G1 and G2.
The girders G1 and G2 are fully restrained at the columns C1 and C2,
with an inflection point located approximately at the mid-span of the
girder, as illustrated in Fig. 15. Since the column used in this system is
relatively strong, the deformation of the column is negligibly small.
Given the symmetry property of the system, the FE analysis considers
only a girder with a half span, as illustrated in Fig. 15. To enhance the
computational efficiency, the FE models remove the columns and si-
mulates the constraints by the columns via constraining corresponding
degrees of the freedoms at the ends of the girder flanges and the shear
tab. The symmetry condition at C0 leads to the zero horizontal move-
ment with a vertical displacement loading applied at the girder end.
Fig. 15 illustrates the mesh details. The girder next to the connection

region (300mm in length) employs solid elements with the smallest size
around 1.0 mm–2.0mm, while the remaining girder uses shell elements
to expedite computing speed. The rotational compatibility between
solid and shell elements is achieved by overlapping the two types of
elements and merging their coincident nodes over a 40-mm length. The
contacts in the solid models employ the eroding single surface contact
method, which is capable of reestablishing contact after the erosion of
elements at the exterior boundary of the model. The steel properties
and fracture parameters follow the values validated in Section 3. The
shell elements do not include the fracture modeling.

Fig. 16 illustrates the load-displacement curves for the girder-to-
column connection using the Bai, RT1, RT0 and CFS models, denoted as
W(Bai)_F(Bai), W(RT1)_F(RT1), W(RT0)_F(RT0) and W(CFS)_F(CFS),
respectively, where W and F represent girder web and girder flange.
Compared with the W(Bai)_F(Bai) case, fracture occurs at a smaller
displacement in the W(RT0)_F(RT0) case, while fracture occurs at a
larger displacement with a higher resistance for the W(RT1)_F(RT1) and
W(CFS)_F(CFS) cases. Besides, the response of W(RT0)_F(RT0) is close
to the W(Bai)_F(Bai) case. The two peak loads in Fig. 16 correspond to
the fracture of the bottom flange and top flange, respectively. Fig. 17(a)
and (b) show the crack patterns at the vertical displacements of 200mm
and 400mm, respectively. Fig. 17(c) illustrates that the Lode angle
parameters computed from the W(Bai)_F(Bai) case at the crack initia-
tion location are close to 0, rather than 1, which explains the similar
responses predicted by the RT0 and Bai model. The RT1 and CFS
models, in contrast, becomes inaccurate, since they are calibrated using
coupon specimens with the Lode angle parameter approximately equal
to 1.0. The significant difference between these load-displacement
curves in Fig. 16 implies that the choice of the fracture model is vital for
the accurate simulation of the girder-to-column connection.

4.2. Bolted shear tab connection

Scaling up of the above Bai model to large-scale structures using
solid elements faces significant challenges imposed by the huge

Fig. 22. Bolted shear tab connection simulation.

Fig. 23. Girder-to-column connection model.
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computational cost. The shell element, on the other hand, allows effi-
cient analyses of large-scale engineering structures with reasonable
accuracies. This sub-section, therefore, examines the feasibility of shell
elements in analyzing the fracture failure in a girder-to-column con-
nection using the properties in the shell element fracture model mod-
ified from the solid element fracture model.

Fig. 18 shows the shear tab connection models built from solid
elements and shell elements. The shear tab connection experiences axial
tension through a displacement controlled loading applied at the end of
the girder, with the axial displacement on the shear tab constrained.
The steel properties and fracture locus parameters follow the data va-
lidated for the solid element model in Section 3. The mesh size in the
critical region around the bolt holes of the solid element model is be-
tween 1.0 mm and 2.0 mm. The shell element model utilizes a piece-
wise-linear plasticity model (material 24 in LS-DYNA). The element size
of the shell element model is around 10mm. Fig. 19 shows the true
stress-strain curves used in the shell element model. An element erosion
procedure removes the elements in the model when the specified failure
strain is reached. The fracture strain of the steel deck is determined by a
shell element simulation using a 25mm element, which is 0.32 as
shown in Fig. 20.

Firstly, the simulation has been conducted with the true stress-strain
relationship in Fig. 19, i.e., the steel property in the shear tab shell
element is chosen as the “initial” curve in Fig. 21. As shown in
Fig. 22(a), the load-resistance in the shell element model is much higher
than the solid element model, as the web cross section has been wea-
kened by the bolt hole. To represent phenomenologically the weak-
ening effect by the bolt hole in shell elements, the true stress-strain
curve of the shear tab element has been adjusted for the shell element
model. After some iterations, the failure displacement and the re-
sistance of the shell element model are close to that of the solid element
model. This adjusted stress-strain curve, which is named as “revised”
curve in Fig. 21, will be used in the girder-to-column connection model
validation. Fig. 22(b) and (c) shows that the corresponding shell frac-
ture strain of Bai model, RT0 model, RT1 model and CFS model are
0.83, 0.78, 1.17 and 1.11, respectively.

4.3. Shell fracture strain of girder flange element

As shown in Fig. 23, the solid element model in Fig. 15 has been
replaced by a shell element model. The ‘revised’ steel property is used
in this model, and the load-displacement relationship of this shell

element model is illustrated in Fig. 24, in which the shell fracture strain
0.10, 0.074, 0.16 and 0.17 of the flange element can accurately simu-
late the W(Bai)_F(Bai), W(RT0)_F(RT0), W(RT1)_F(RT1) and W(CFS)_F
(CFS) cases, respectively.

4.4. Calibration flow summary

Fig. 24 indicates that the modified shell girder-to-column connec-
tion model could accurately reflect the load-displacement relationship
derived from the solid element model, for various fracture models used
in the solid element model. In general, the accuracy of this shell ele-
ment model is mainly controlled by three key parameters, the stress-
strain curve of the shear tab element, the fracture strains of the flange
and shear tab elements. As mentioned above, simulation iterations are
necessary to calibrate these three parameters. Therefore, the calibration
procedure of the shell girder-to-column connection model is summar-
ized into a flow chart in Fig. 25.

5. Floor system simulation

The floor simulation follows an explicit pushdown method im-
plemented in LS-DYNA R9.1 [25]. In the numerical modeling, as shown
in Fig. 26, the girder, beam, column, and steel deck are modeled using
4-node shell elements with reduced integration. The mesh size equals
10mm and 25mm in the connection region and other regions. The
concrete slab is modeled with 8-node solid elements with reduced in-
tegration. The Flanagan-Belytschko stiffness form with an exact volume
integration for solid elements [25] is introduced to control the hour-
glass of the concrete element. The element size of the concrete is also
around 25mm. All the welded steel fabrics are modeled with 2-node
truss elements with the element size identical to that of the concrete
slab. The shear stud is modeled using 2-node Hughes-Liu beam ele-
ments [25] with 2× 2 Gauss quadrature integration at the cross-section
with an element size of 25mm.

The numerical procedure assumes the perfect bond between the
welded steel fabrics and the concrete slab, implemented using the
keyword ∗CONSTRAINED LAGRANGE IN SOLID, and ignores the slip
between the two materials. The interaction between the concrete and
shear stud follows the same modeling approach.

The interaction between the shear studs and the girder or beam are
simulated using nonlinear springs, through a discrete beam element
formulation in LS-DYNA (beam element formulation 6) with material

Fig. 24. Simulation results of the girder-to-column connection.
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model 119. The experimental program includes a separate series of
push-out tests to determine the load-displacement input for the non-
linear springs representing the shear stud connection. The load-dis-
placement curves of the shear stud connection along the girder direc-
tion and beam direction follow the measured response in Specimen 1
and Specimen 2 shown in Fig. 27(a), respectively. Fig. 27(b) shows the
measured load-displacement curves of these push-out tests. As there are
four shear studs in the push-out specimen as illustrated in Fig. 27(a),
the shear resistance of a single shear stud equals a quarter of the
measured resistance in a push-out specimen, as shown in Fig. 27 (c).
Also included in Fig. 27(c) are the two piece-wise linear load-de-
formation curves, which define the load-displacement relationship for
the nonlinear spring elements in each of the two shearing directions
normal to the longitudinal axis of the shear stud. Each nonlinear spring
is deleted when the displacement reaches the maximum slips along

either axis. As shown in Fig. 27 (c), the maximum slips of shear stud are
defined based on Eurocode 4 [27], which are defined as the load levels
reduced to 90% of the peak load. The nonlinear springs have an arti-
ficially enlarged stiffness in other four degrees of freedoms to prevent
failures in other directions. For the connection between steel members,
the tie constraint between each other is formed by sharing the same
node. The contact between steel members and concrete slab, and the
contact between steel decks and beams are implemented using the
automatic surface-to-surface contact with a friction coefficient of 0.5,
which is used by Tahmasebinia et al. [28]. As illustrated in Fig. 26, all
the degrees of freedoms at the ends of the extended girders, i.e., G7, G8,
and extended beams, i.e., B6, B7, B8, are constrained. For the extended
girder G5 and G6, the movement along the girder axis is constrained by
a spring element, while the movements in other directions are fully
constrained. The stiffness of the spring element derives from the

Fig. 25. Calibration flow chart of shell girder-to-column connection model.
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experimentally measured axial force in G5 and G6 and the corre-
sponding displacements. The axial force of these girders derives from an
inverse estimation based on the measured axial strains in G5 and G6,
while the axial displacements along the horizontal direction are mea-
sured by the Linear Variable Differential Transformer (LVDT) along the
horizontal direction. The elastic stiffness of the horizontal spring sup-
ports is calculated by dividing the girder axial force by its horizontal
displacement equals about 10 kN/mm. The concentrated nodal force is
applied to all the nodes of the concrete top surface in the two-bay area
to simulate the equally distributed load. The computed resultant ver-
tical force at the column bases is taken as the load carried by the floor
system.

The material for the girder, beam and steel deck use the piecewise-
linear plasticity model (material 24 in LS-DYNA) defined by the true
stress-strain curves in Fig. 19. The shear tab element uses the revised
true stress-strain curve in Fig. 21. The welded steel fabrics employ a
bilinear elastic-plastic model (material 3 in LS-DYNA), which requires

(a) Overall view of the model   

(b) Finite element mesh details 

Fig. 26. Finite element model details.

(a) Dimensions of the push-out specimens (b) Load-displacement curves

 (c) Shear resistance of shear stud 

Fig. 27. Push-out specimens.
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Fig. 28. Uniaxial tensile stress–crack width relationship for concrete.
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the input on the elastic modulus, yield strength, tangential modulus
after yielding and failure strain. When the strain exceeds the failure
strain (equals the elongation in Table 1), the corresponding steel fabric
element is to be removed.

A concrete damage plasticity model (CDPM, material 273 in LS-
DYNA) is used to simulate the concrete slab, which is based on the
works published by Grassl [29,30]. This model is capable of describing
the degradation of stiffness, irreversible displacements, the effects of
confinement on concrete strength and the realistic response of cyclic
loading. Moreover, the tensile and compressive failure simulated by this
model is meshed independently. The damage plasticity model follows
basically the following equation:

= − + −σ ω σ ω σ(1 ) (1 )t t c c (20)

where σ is the effective stress tensor, σt and σc are the positive and
negative parts of σ, and the scalar ωt and ωc are the tensile and com-
pressive damage variables, ranging from 0 (undamaged) to 1 (fully
damaged). The brittle behavior of concrete is often characterized by a
stress-crack displacement response instead of a stress-strain relation-
ship. In this model, the stress-crack displacement relationship can be
defined with different options: linear, bilinear or an exponential tension
softening response. This study adopts a bilinear stiffening response as
detailed in Fig. 28, where, ft is the maximum tensile strength, and Gf

denotes the fracture energy of concrete that represents the area under
the tensile stress-crack displacement curve. The fracture energy Gf de-
pends on the concrete quality and follows Eq. (21) (CEB-FIP Model
Code 2010) [31].

=G f73f c
0.18 (21)

where fc is the compressive strength of concrete. The cubic strength
(33MPa) is converted into the cylindrical strength (26MPa) based on
the CEB-FIP Model Code 2010 [31]. The tensile strength, fracture en-
ergy, and elastic modulus are thus equal to 2.65MPa, 0.131 N/mm, and
29664MPa, respectively. The other concrete model parameters employ
the default value in the CDPM model. Fig. 29 shows the comparison of
the numerical and experimental curves [32,33] of concrete using the
model variables mentioned above.

(a) Compression (b) Tension

Fig. 29. Compressive and tensile results for concrete.

Fig. 30. Simulations calibrated by different fracture model.

(a) Failure of the G1-C1 connection 

(b) Concrete cracks 

Fig. 31. Failure phenomenon in the simulation calibrated by Bai model.
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Fig. 30 shows that the numerical simulation based on the calibrated
Bai model agrees with the experimentally measured load-displacement
curve. The essential characteristics of the load-displacement curves,
including the ascending, the softening, and the re-ascending stage, are
successfully captured. Besides, the failure phenomenon, including the
failure of the G1-C1 connection and the concrete cracks on the slab top
surface are well captured by the simulation, as shown in Fig. 31(a) and
(b). Despite the presence of many reinforcements and shear studs in the
concrete slab, the Bai model achieves reasonable accuracy in predicting
the load-displacement response and the failure mechanisms at large
deformation levels. The RT0 model initiates a fracture failure at a
smaller displacement than the Bai model and the test. The numerical
analysis also examines the effect of concrete damage and steel fracture.
Fig. 32 confirms that both the concrete damage and steel fracture
should be considered in the collapse simulation of the composite floor
system. The ignorance of either in the numerical simulation leads to an
unconservative estimation of the floor resistance with an incorrect
failure mode.

6. Conclusions

This paper presents an upscale study to consider the shear fracture
material model in the progressive collapse simulation of a steel-con-
crete composite floor model using macro shell elements. The combined
experimental and numerical investigation examines the failures at dif-
ferent engineering scales, which covers: (1) the material failure using
five types of coupon specimens with contrast difference in stress
triaxiality and Lode angles; (2) the structural component failure in the
girder-to-column connection; and (3) the system failure in a full-scale
steel-concrete composite floor test. The study presented above leads to
the following conclusions:

1. Among the three different fracture models considered, Bai model
demonstrates superior performance than the RT model and the CST
model, in predicting the initiation and evolution of fracture failure
for a wide range of stress triaxiality and Lode angle parameters. The
RT model and CST model are limited to the stress triaxiality and
Lode angle parameters, from which they are calibrated.

2. Since the fracture models used in this study are strain-based in
nature, the numerical implementation of such models exhibit in-
evitably a mesh size dependence. Nevertheless, the current study
proposes a mesh scaling factor for a reasonable range of element
sizes anticipated in the engineering simulation using solid elements.
The proposed scaling factor leads to similar load-deformation re-
sponses for FE models with different element sizes and remains in-
dependent of the stress triaxiality and Lode angle experienced by the
material.

3. In the moment-resisting connection, the fracture of both the girder
flange and girder web depends highly on the Lode angle.

4. To overcome the numerical challenges in simulating large-scale
structural systems, this study adopts the macro shell elements to
simulate the fracture failure in the steel-concrete composite floor
system. The fracture strain in the macro shell elements, in which the
Bai model is not directly applicable, derives from an empirical
conversion from the corresponding solid elements using the Bai
model for different stress triaxiality and Lode angle parameters.

5. In the steel-concrete composite floor system, simulation of both the
steel fracture and the concrete damage remains essential to ensure
an accurate estimation of the load resistance and the corresponding
failure mechanisms.
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